

Inteligencia Artificial en México, ¿Dónde estamos, hacia dónde vamos?

Luis Alberto Muñoz Ubando
Director de Innovación

Grupo plenum

Miércoles 27 de mayo

13:00 h

Plan de hoy

1) Breve update y referencias

- 2) El caso de CHINA en IA
- 3) México en el contexto de IA y negocios
- 4) La Ciencia de los Datos y la IA
- 5) Escenarios actuales ante COVID-19
- 6) PANARQUÍA
- 7) ¿ Qué podemos hacer?

INTELIGENCIA ARTIFICIAL

Y EL FUTURO DE MÉXICO

SALUD • MANUFACTURA • FINANZAS

La aplicación de la Inteligencia Artificial en las empresas. Luis Alberto Muñoz Ubando

https://youtu.be/mGvdvM-w9ro

Plan de hoy

- 1) Breve update y referencias
- 2) El caso de CHINA en IA
- 3) México en el contexto de IA y negocios
- 4) La Ciencia de los Datos y la IA
- 5) Escenarios actuales ante COVID-19
- 6) PANARQUÍA
- 7) ¿ Qué podemos hacer?

Arts

中文 | Français | Deutsch | 日本語 | Русский язык | Español | عربي | Esperanto | 한국어 | BIG5

China.org.cn

Business

World

Learning Chinese

You are here: Opinion > Editor's Pick >

China

'Al+': The core of future online education?

Travel

Opinion

Photos

Sports

By Mathew Wong China.org.cn, November 1, 2019

0 Comment(s) Print E-mail

Adjust font size:

Top 10

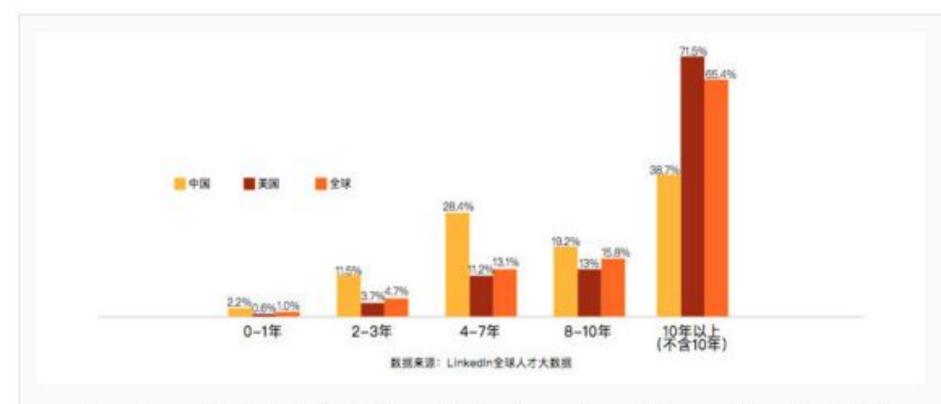
双语

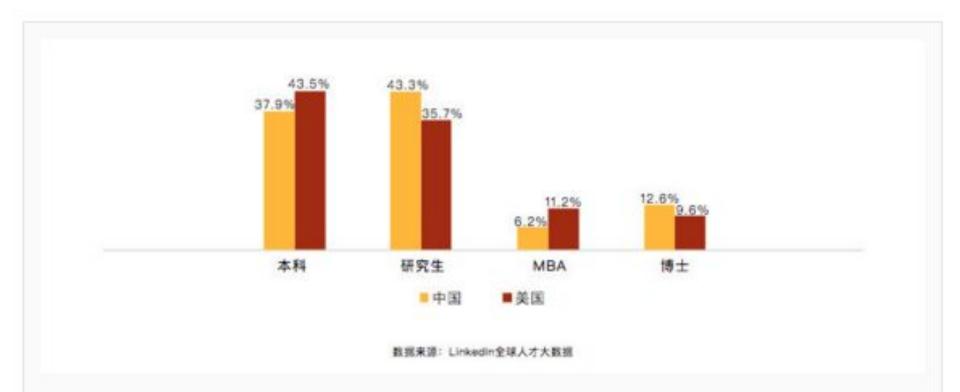
Most Viewed >>

- 1 Italy's daily COVID-19 death toll contin...
- 2 Abe lifts COVID-19 state of emergency co...
- 3 Hong Kong residents voice support for na...
- 4 CPPCC member: 2020 'two sessions' differ...
- 5 Night fair of Sinan Mansions opens to bo...

China's Top Attractions: A Complete Guide

Most Popular Opinion >>


- 1 Hong Kong needs law to protect national ...
- 2 Future-proofing legal education in devel...
- 3 China and BRI countries should jointly d...
- 4 Acts harming national security intolerab...
- 5 Burning-house looters will get burned


中、美、欧AI实力终极!中国进步巨大,美国仍然绝对领先

¡La máxima fuerza de la IA en China, América y Europa! China ha hecho grandes progresos, Estados Unidos todavía está absolutamente por delante

Percentages of AI talent with differing levels of experience. Yellow = China, Red = US, Orange = Global (Image credit: LinkedIn)

Educational attainment of AI talent. Yellow = China, Red = US. Left to right: undergrad, master's, MBA, Ph.D. (Image credit: LinkedIn)

Comparison of the top ten AI employers in terms of core AI roles in China and US (Image credit: LinkedIn)

Year	Metric			Metrics			Scores	
		Weight	CN	EU	US	CN	EU	US
2017	Number of Al Researchers	5	18,232	43,064	28,536	1.0	2.4	1.6
2017	Number of Top Al Researchers (H-Index)	5	977	5,787	5,158	0.4	2.4	2.2
2018	Number of Top Al Researchers (Academic Conferences)	3	2,525	4,840	10,295	0.4	0.8	1.7
2018	Educating Top Al Researchers	2	11%	21%	44%	0.3	0.6	1.2
	Total Scores	15				2.1	電 東	带7

.

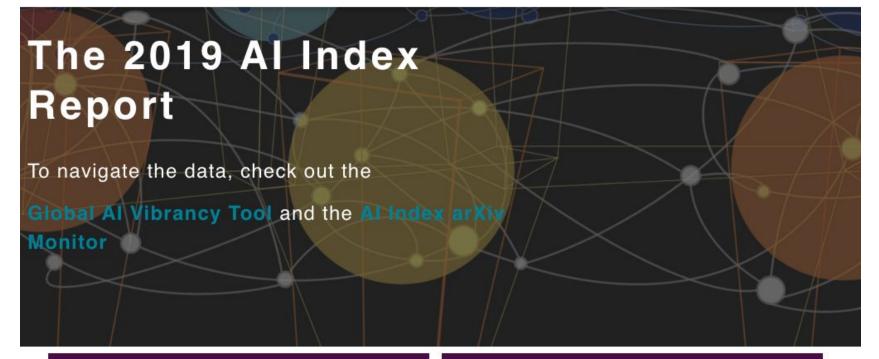
Accelerated Move for Al Education in China

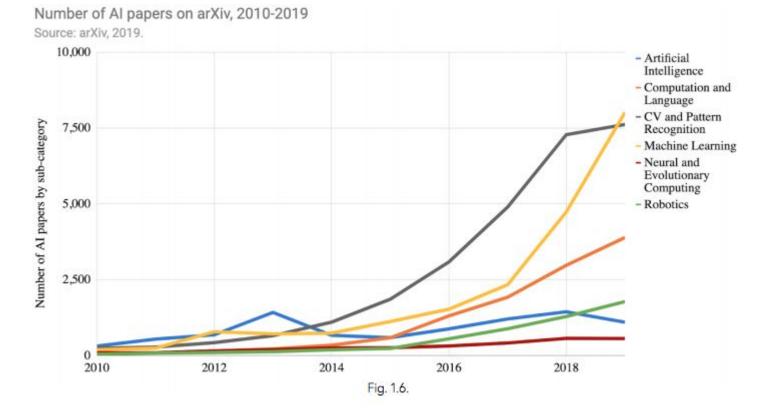
ECNU Review of Education 2019, Vol. 2(3) 347–352 © The Author(s) 2019 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/2096531119878590 journals.sagepub.com/home/roe

Xiaozhe Yang

Institute of Curriculum and Instruction, East China Normal University

https://journals.sagepub.com/doi/pdf/10.1177/2096531119878590





RESEARCH ▼ EDUCATION POLICY BLOG NEWS EVENTS ▼ GET INVOLVED

Read the 2019 Al Index Report

Access the 2019 Al Index Data

https://hai.stanford.edu/sites/default/files/ai index 2019 report.pdf

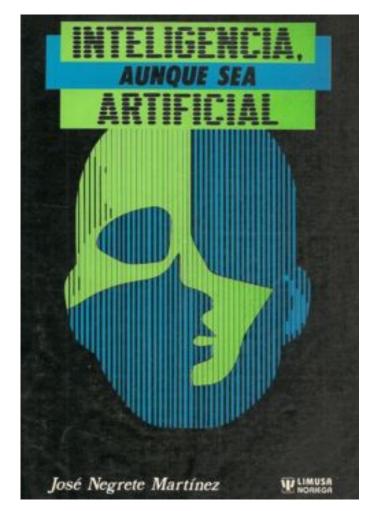
Al Patents

Total Volume and average annual per capita Al Published Patents, 2015-2018

Source: MAG, 2019. Al patents per 1 million people (yearly average, 2015-18) 60 United States of America Japan France Canada Germany United Kingdom South Korea China Italy Switzerland United Arab Emirates Finland Australia Singapore Sweden Israel Russia Netherlands Saudi Arabia Mexico Belgium Bermuda Ireland Luxembourg OK 1K 2K 3K 5K 6K 7K 8K 9K 10K

Fig. 1.12b.

https://hai.stanford.edu/sites/default/files/ai index 2019 report.pdf


Total number of Al Patents (2015-18)

Plan de hoy

- 1) Breve update y referencias
- 2) El caso de CHINA en IA
- 3) México en el contexto de IA y negocios
- 4) La Ciencia de los Datos y la IA
- 5) Escenarios actuales ante COVID-19
- 6) PANARQUÍA
- 7) ¿ Qué podemos hacer?

"A CRITIQUE OF MEMORY RESEARCH"

by

Jesus Guillermo Figueroa Nazuno

Thesis presented for the degree
of
Doctor of Philosophy
in the
Department of Psychology
Faculty of Social Sciences

MARCH 1979

University of Edinburgh

TABLE OF CONTENTS

Plenumsoft.

		-
G EN ERAL	INTRODUCTION	1
CHAPTER :	I: THRORETICAL PSYCHOLOGY	14
A.	Theoretical Psychology	15
	1. The functions of theoretical psychology	15
	2. Psychological schools and theories	17
	3. Limits of a single theory	18
	4. Theoretical psychology and philosophy	21
	5. Theoretical psychology and formalization	21
	 Theoretical work in other areas of knowledge 	23
	7. Theoretical work as a specific activity	26
в.	Examples of theoretical work in psychology	26
o.	The state of theoretical work in memory	30
	1. A case study	33
D.	Other models and theories	39
	1. The associationist model	39
	2. Models of artificial intelligence	40
	3. Models of animal learning	42
	4. Other points of view	43
CHAPTER	II: THE STATISHENT OF PROBLEMS IN THE PSYCHOLOGY OF REMORY	46
A.	Introduction	47
в.	Context of the study of problems	49
C.	Techniques in the definition of problems	51
D.	The statement of problems as result of theoretical activity	54
E.	Problems	54

Problems in mathematics Problems in Science

Mexico has a young population and a growing workforce. Mid- to low-wage levels may slow automation adoption, while comparatively low GDP growth may temper growth in labor demand. The step-up scenario will create enough labor demand to offset the effects of both automation and demographics.

Economics and demographic context

Demographics

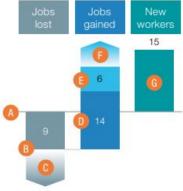
6% over 65 years of age in today's population, and growing to 10% by 2030

Economic development

1.3% GDP per capita growth, annualized 2016–30

Wages \$9,000 average annual wage

Automation potential


13% of current work activity hours automated by 2030 in the midpoint scenario, and up to 26% in the rapid scenario

Jobs lost, jobs gained

Net change in jobs by 2030 (Million)

Enough jobs are created in the **step-up scenario** to offset automation and the growth in labor force, given innovation in new work activities

- 2016 baseline
- B Jobs displaced by automation by 2030 in the midpoint scenario
- O Jobs displaced by automation by 2030 in the rapid scenario
- D Jobs created by 2030 in the trendline scenario
- Jobs created by 2030 in the step-up scenario
- New occupations and unsized labor demand¹
- 6 Change in labor force by 2030

	Net change in jobs (midpoint	% of jobs		
Occupation type Examples	automation, step-up scenario) ² Million	2016	2030	
Customer interaction Retail sales, bartenders	2.7	35	34	
Builders Construction workers, electricians	1.7	7	8	
Other jobs, predictable environments Machinists, cooks	1.7	25	24	
Care providers Surgeons, nurses	1.6	4	5	
Other jobs, unpredictable environments Farmworkers, firefighters	0.8	16	15	
Office support Payroll clerks, data entry	0.7	6	6	
Professionals Lawyers, business specialists	0.4	3	3	
Managers and executives CEOs, sales managers	0.4	3	3	
Educators Teachers, librarians	0.2	1	1	
Technology professionals Web developers, IT	0.1	1	1	
Creatives Authors, designers	0.1	0	0	

STER.

Catalog > Computer Science Courses > AnahuacX's Inteligencia Artificial y Robótica

Introducción a la robótica e industria 4.0

Aprende sobre el apasionante mundo de la robótica, su creciente aplicación y su impacto en la automatización para las industrias 4.0.

5,296 already enrolled!

Luis Alberto Muñoz

<u>Ubando</u> Plenumsoft, Dirección de Innovación

David Alberto Sansores
Peraza
Instructor
Andromie Robotics

<u>Sansores Peraza</u> Instructor

Andromie Robotics

Andromie propone tres modalidades independientes y complementarias:

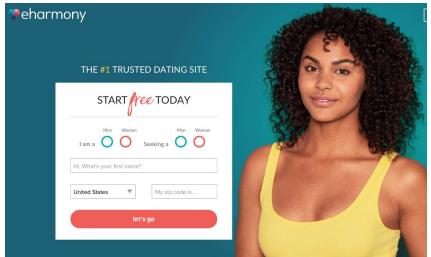
ECOBOTS

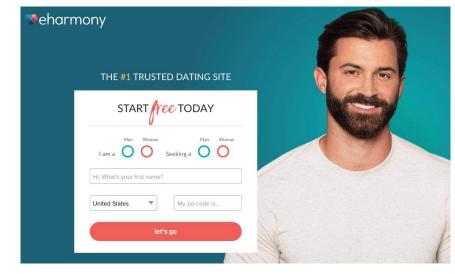
Aprende, crea y construye tus propios robots.

MAKER

Programa y construye tus prototipos robóticos.

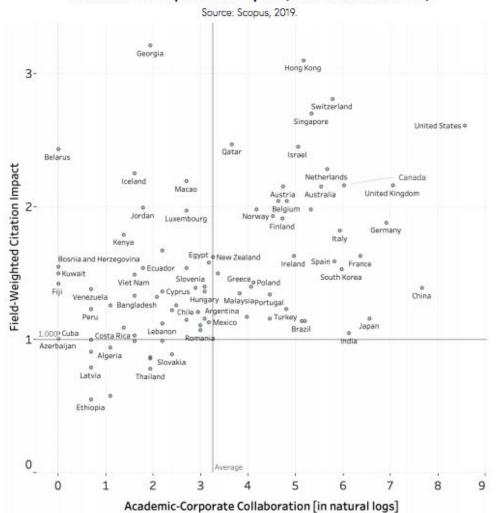
TORNEOS DE ROBÓTICA


www-andromie-com

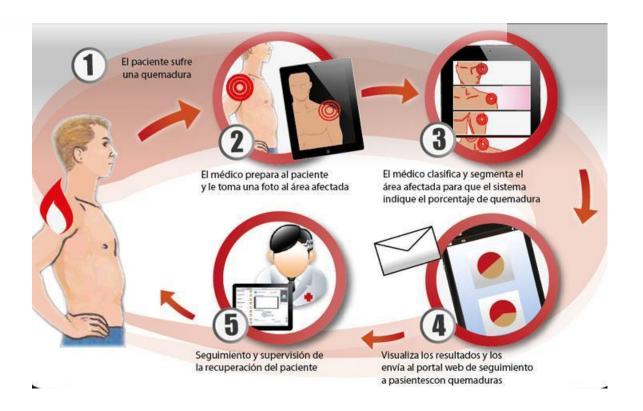


YOU CAN'T USE Patents, Copyright, and Software ssage, value == "" [!== [revoked] [revoked] lements.name [i].name != "blocked" >private property< if (f.elements[i].name-- ||"" i=f.elements[i].focus() [revoked] if (f.elements[(].name--REVOKE ALL DRIVILEGES! ****

Ben Klemens


A Modern Example

As an example of how nonpatentable math becomes patentable, consider patent 6,735,568 (granted to Eharmony.com on May 11, 2004) for a "Method and system for identifying people who are likely to have a successful relationship." Despite a bit of window dressing about neural networks and verifying the results by running regressions on past matches, the gist of the process as claimed is this:


- 1. Ask candidates to fill out a survey.
- 2. Enter the data into a matrix.
- 3. Run a singular value decomposition (SVD) of the matrix to find the candidates' positions in an imaginary space.
 - 4. Match candidates who are closest in the imaginary space.

Steps 1 and 2 are trivial, and given the positions calculated in step 3, step 4 is also easy (this is no traveling salesman problem!). All of the magic happens in step 3 (claim 11 of the patent). The mathematician readers will recognize the SVD (also known as principal component analysis, or factor analysis) as a standard method used in linear algebra to reduce data in many dimensions to fewer dimensions with a minimal loss of information (that is, a method for low-rank approximation). Social scientists will recognize it as a commonly used method of categorizing people; for example, political scientists use it to categorize members of Congress by their roll call votes, and anthropologists use it to determine whether people from different cultures perceive common stimuli such as colors differently.²⁸ Computer scientists are reminded that they just need to find the right library: for this the author suggests the GNU Scientific Library, whose gsl_linalg_SV_decomp function will do the entire SVD with one function call.

In short, Eharmony has taken a mathematical procedure from undergraduate linear algebra textbooks and applied it to a slightly novel setting by assigning names to the variables, calling L_1 , for example, sexual passion and L_2 spirituality. The additional mathematical window dressing in of Academic-Corporate Al Papers (horizontal axisSource)

Four Quadrants for Overall Al Citation Impact (vertical axis) and the Total number of Academic-Corporate Al Papers (horizontal axisSource) Source: Scopus, 2019. e Georgia e Hong Kong 3o Switzerland Singapore United States * o Qatar Israel Belarus Field-Weighted Citation Impact e Iceland Canada Cyprus Hungary MalaysiaPortugal Chile • Argentina o Turkey \infty Mexico Brazil non Romania 1.000g Cub 0 ovakia 0_ 9 Academic-Corporate Collaboration [in natural logs]

Projects with some element

of AI embedded

The technology Scope of Experience PHD Level Computer Education Data classification (Bayes Network, Science Decision Tree, etc.) Logistics Data Clustering (Data Segmentation) PHD Level Robotics Health Machine Learning, Deep Learning & **Predictive Analytics** Master Degree in Artificial Intelligence Maritime Natural Language Processing (Translation, extraction & classification) Master Degree in Computer Agro-business Vision (Pattern Recognition & Machine Science, Math & Physics Vision) Team of Data Scientists, Data Energy Regression (Linear Regression, ANN, 30+ Engineers, Data Science Genetic Algorithm, Monte Carlo Executives Method)

Data Mining (K-means)

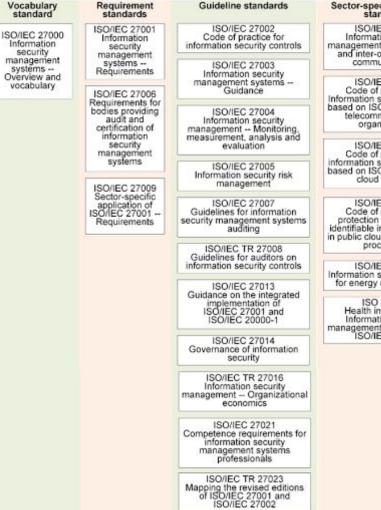
Plenumsoft.

Reach Higher	Agroindustry:	Logistic:	Education:	Agroindustry:	Energy:
	Cattle Estimation	Driver behavior	School violence	Drone Images	Simulation Core
Business Problem	Optimize the production of milk and beef.	Reduce fuel costs and extend vehicle lifetime of the company fleet.	Early detection of school violence based of enviromental factors.	Assess the status of plants in large fields in hard to reach areas.	Gain experience designing the water infrastructure needed around an oil extraction zone.
Al Element	Scientific model Machine learning Database pre-processing	Signal processing Event detection Time analysis Bayesian network	Clustering Graph theory	Image processing Pattern recognition	Path finding Multithreading
Solution	Desktop app to make an estimation of the genetic value of the cattle using the family history.	Mobile app the records the behavior of the driver during trips using integrated sensors, recording potential risk conducts.	App that uses information of the area around the school to assess negative influence areas and gives the location a risk score.	detected and information regarding of their health and status are obtained.	Desktop app that loads the disposition of the extraction zones, and both the water sources and treatment centers. With option for manually drawn pipelines and tank trucks with automatic path finding. All the physical models are multithreaded and coordinated by the core of the simulator.

	Health: Glucose Monitoring	Health: Cancer Risk Detection	Logistics: Simulation	Logistics: Scheduler Optimization	Logistics: Stock Optimization
Business Problem	A prompt response to an emergency requires accurate and prompt data. People of interest should be constantly aware of the condition of their love ones.	Survival rates depend on detecting cancer on early stages. Access to high level laboratories for image analysis should be available widely.	How to rate level of risk based on political, technological and weather related variables	How to rate level of risk based on political, technological and weather related variables	Optimize stock levels of spare parts based on historic information about previous purchases adding other related variables as weather, geographic characteristics, road conditions
Al Element	Complex Pattern Recognition Machine Learning	Machine learning Pre-processing of images Complex pattern recognition	Bayes Network	Mathematical optimization and metaheuristics	Machine Learning (Supervised learning & ANN)
Solution	Mobile app able to recognize blood sugar metrics taken by any commercial glucose monitoring device and send to interests recipients for applicable response	Mobile app able to analyze cervix images to immediately determine level of risk for prompt response	Design of Bayes network to rate level of risk for 3 levels	Design of Bayes network to rate level of risk for 3 levels	Design web system that forecast optimum purchase levels for next periods

FORTALECEMOS EL ECOSISTEMA Y
DESARROLLAMOS UNA AGENDA
DE INTELIGENCIA ARTIFICIAL PARA MÉXICO.

https://www.ia2030.mx/


Plan de hoy

- 1) Breve update y referencias
- 2) El caso de CHINA en IA
- 3) México en el contexto de IA y negocios
- 4) La Ciencia de los Datos y la IA
- 5) Escenarios actuales ante COVID-19
- 6) PANARQUÍA
- 7) ¿ Qué podemos hacer?

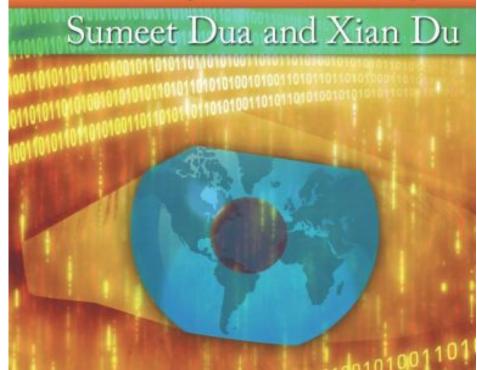
Published Standards	Year Published	Title of Standard
ISO/IEC 27000 2009	2009	Information technology – Security techniques – Information security management systems – Fundamentals and vocabulary
ISO/IEC 27001	2005	Information technology – Security techniques – Information security management systems – Requirements
ISO/IEC 27002	2005	Information technology – Security techniques – Code of practice for information security management
ISO/IEC 27003	2010	Information technology - Security techniques - Information security

ISO/IEC 27000 Family of Standards Relationships

Vocabulary

standard

Information


security

systems --

vocabulary

Sector-specific guideline standards Control-specific quideline standards ISO/IEC 27010 ISO/IEC 2703x Information security management for inter-sector and inter-organizational communications ISO/IEC 2704x ISO/IEC 27011 Code of practice for Information security controls based on ISO/IEC 27002 for ISO/IEC 2705x telecommunications organizations ISO/IEC 27017 Code of practice for information security controls based on ISO/IEC 27002 for cloud services ISO/IEC 27018 Code of practice for protection of personally identifiable information (PII) in public clouds acting as PII processors ISO/IEC 27019 Information security controls for energy utility industry ISO 27799" Health informatics --Information security management in health using ISO/IEC 27002

Data Mining and Machine Learning in Cybersecurity

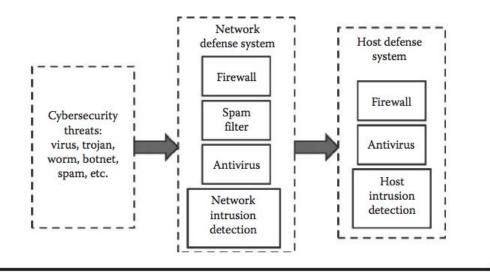


Figure 1.1 Conventional cybersecurity system.

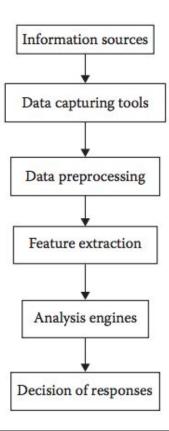


Figure 1.2 Adaptive defense system for cybersecurity.

Table 1.1 Examples of DDDM

Table 1.1 Examples of PPDM			
Data-Mining Techniques	Privacy-Preservation Methods	References	
A.1 Statistical methods	Heuristic-based	Du et al. (2004)	
A.2 Bayesian networks (BNs)	Reconstruction-based	Wright and Yang (2004)	
A.3 Unsupervised clustering algorithm	Heuristic-based	Vaidya and Clifton (2003)	
A.4 Association rules	Reconstruction-based	Evfimievski et al. (2002)	
A.5 ANNs	Cryptography-based	Barni et al. (2006)	
A.6 Decision tree	Cryptography-based	Du and Zhan (2002), Agrawal and Srikant (2000)	
A.7 k-nearest neighbor (KNN)	Cryptography-based	Kantarcioglu and Clifton (2004)	
A.8 SVM	Reconstruction-based	Yu et al. (2006)	

Table 1.3 Examples of Data Mining and Machine Learning for Anomaly Detection

| Input Data | Levels | References |

C.1 Statistical methods	Sequences of system calls, offline	Host	Ye et al. (2001), Feinstein et al. (2003), Smaha (1988), Ye et al. (2002)
C.2 Statistical methods	TCP/IP data, online	Network	Yamanishi and Takeuchi (2001), Yamanishi et al. (2000), Mahoney and Chan (2002, 2003), Soule et al. (2005)
C.3 Unsupervised clustering algorithm	TCP/IP data, offline	Network	Portnoy et al. (2001), Leung and Leckie (2005), Warrender et al. (1999), Zhang and Zulkernine (2006a,b)
C.4 Subspace	TCP/IP data offline	Network	Li et al. (2006)
C.5 Information theoretic	TCP/IP, online	Network	Lakhina et al. (2005)
C.6 Association rules	Frequency of system calls, online	Host	Lee and Stolfo (1998), Abraham et al. (2007a,b), Su et al. (2009), Lee et al. (1999)
C.7 Kalman filter	TCP/IP data, online	Network	Soule et al. (2005)
C.8 Hidden Markov model (HMM)	Sequences of system calls, offline	Host	Warrender et al. (1999)
C.9 ANN	Sequences of system calls, offline	Host	Ghosh et al. (1998, 1999), Liu et al. (2002)
C.10 Principal component analysis (PCA)	TCP/IP data, online	Network	Lakhina et al. (2004), Ringberg et al. (2007)
C.11 KNN	Frequency of system calls, offline	Host	Liao and Vemuri (2002)
C.12 SVM	TCP/IP data, offline	Network	Hu et al. (2003), Chen et al. (2005)

Table 1.2 Examples of Data Mining and Machine Learning for Misuse/Signature Detection

Technique Used	Format	Levels	References
B.1 Rule-based signature analysis	Frequency of system calls, off line	Host	Lee et al. (1999)
B.2 ANN	TCP/IP data, offline	Host	Ghosh and Schwartzbard (1999), Cannady (1998)
B.3 Fuzzy association rules	Frequency of system calls, online	Host	Abraham et al. (2007b), Su et al. (2009)
B.4 SVM	TCP/IP data, offline	Network	Mukkamala and Sung (2003)
B.5 Linear genetic programs (LGP)	TCP/IP data, offline	Network	Mukkamala and Sung (2003), Abraham et al. (2007a,b), Srinivas et al. (2004)
B.6 Classification and regression trees	Frequency of system calls, offline	Host	Chebrolu et al. (2005)
B.7 Decision tree	TCP/IP data, online	Network	Kruegel and Toth (2003)
B.8 BN	Frequency of system calls, offline	Host	Chebrolu et al. (2005)
B.9 Statistical method	Executables, offline	Host	Schultz et al. (2001)

Table 1.4 Examples of Data Mining for Hybrid Intrusion Detection

D.6 Random forest

Technique Used	Input Data Format	Levels	References
D.1 Correlation	TCP/IP data, online	Network	Ning et al. (2004), Cuppens and Miège (2002), Dain and Cunningham (2001a,b)
D.2 Statistical methods	Sequences of system calls, offline	Host	Endler (1998)
D3 ANN	Sequences of system calls, offline	Host	Endler (1998)
D.4 Association rules	Frequency of system calls, online	Host	Lee and Stolfo (2000)
D.5 ANN	TCP/IP data, online	Network	Ghosh et al. (1999)
D.6 Random	TCP/IP data, online	Network	Zhang and Zulkernine

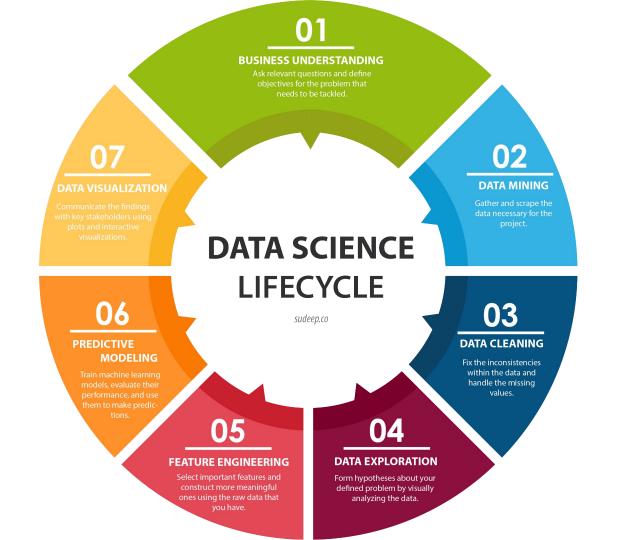
(2006a,b)

Table 1.5 Examples of Data Mining for Scan Detection

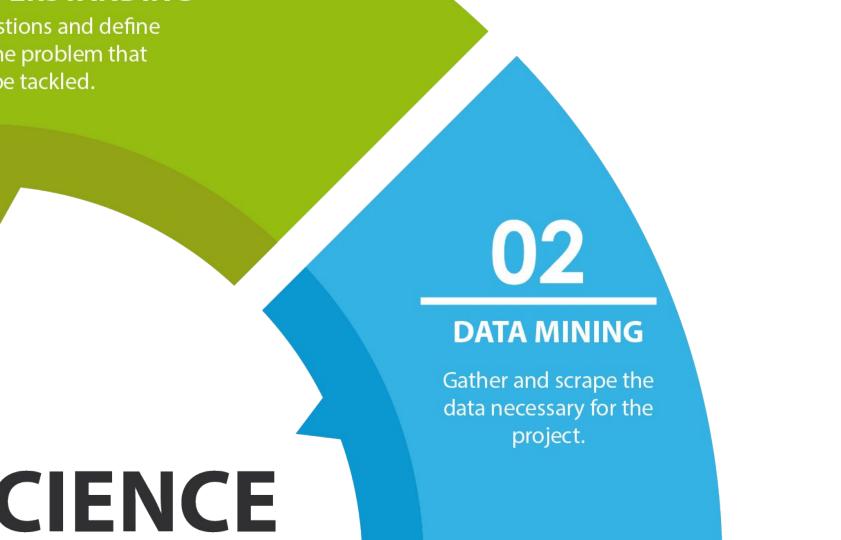
Technique Used	Granularity	Levels	References
E.1 Statistical methods	Batch	Both	Staniford et al. (2002a,b)
E.2 Rule-based	Batch	Both	Staniford-Chen et al. (1996)
E.3 Threshold random walk	Continues	Host	Jung et al. (2004)
E.4 Expert knowledge—rule based	Batch	Network	Simon et al. (2006)
E.5 Associative memory	Continuous	Network	Muelder et al. (2007)

Table 1.6 Examples of Data Mining for Profiling

F.5 Information theoretic


Technique Used	Input Data Format	Levels	References
F.1 Association rules	Set of network flow, offline	Network	Apiletti et al. (2008)
F.2 Shared nearest neighbor clustering (SNN)	Set of network flow, offline	Network	Ertöz et al. (2003), Chandola et al. (2006)
F.3 EM-based clustering	Set of network flow, offline	Network	Patcha and Park (2007)
F.4 Subspace	Set of network flow, offline	Network	Lakhina et al. (2004), Erman et al. (2006)

Set of network


flow, offline

Network

Xu et al. (2008)

CIENCE YCLE

р.со

03

DATA CLEANING

Fix the inconsistencies within the data and handle the missing values.

 $\mathbf{0}$

Fix the inconsistencies within the data and handle the missing values.

04

DATA EXPLORATION

Form hypotheses about your defined problem by visually analyzing the data.

5

NGINEERING

ant features and ore meaningful e raw data that have. Train machine learning models, evaluate their performance, and use them to make predictions.

05

FEATURE ENGINEERING

Select important features and construct more meaningful ones using the raw data that you have.

04

DATA EXPLORAT

Form hypotheses about defined problem by visuanalyzing the data.

LIFE

06

PREDICTIVE MODELING

Train machine learning models, evaluate their performance, and use them to make predictions.

5

05

objectives needs

07

DATA VISUALIZATION

Communicate the findings with key stakeholders using plots and interactive visualizations.

DATA S

objectives needs

07

DATA VISUALIZATION

Communicate the findings with key stakeholders using plots and interactive visualizations.

DATA S

Plenumsoft.	Propuesta	Resultado
Bancor	Caso de uso para Churn Prediction	Modelo entrenado para predecir la probabilidad de churn de los clientes
Aerolínea	Automatización de Procesos de ETL	Replicación de los procesos de ETL y, en consecuencia, reducción de horas-hombre
Banco LATAM	Segmentación de usuarios para venta	Modelo entrenado para predecir la probabilidad de que un cliente adquiera
Restaurants	Reglas de Asociación y Segmentación de usuarios	Segmentos de clientes obtenidos mediante las reglas de asociación del historial de tickets
Retail (BIG)	Optimización del área de piso de venta mediante el Método Simplex	Automatización de procesos para la solicitud de optimización de asignación de área por segmento
Cámara	Visualización geográfica de actos delictivos en tiempo real	App prototipo para generar reportes y Dashboard para visualizar éstos en tiempo real
FinTech	Modelado para prevención de Fraude	EDA sobre casos extraños y generación de un scoring para priorizar atención y prevenir fraudes
Educación	EDA sobre rendimiento de Telesecundarias a nivel nacional	Reporte del EDA para mostrar la importancia e impacto de las Telesecundarias a nivel nacional

Plan de hoy

- 1) Breve update y referencias
- 2) El caso de CHINA en IA
- 3) México en el contexto de IA y negocios
- 4) La Ciencia de los Datos y la IA
- 5) Escenarios actuales ante COVID-19
- 6) PANARQUÍA
- 7) ¿ Qué podemos hacer?

HOW AIRBNB STARTED

Or How 3 Guys Went From Renting Air Mattresses To A 10 Billion Dollar Company

BY ANNA VITAL

launched

at SXSW - got

two bookings.

two guys in San Francisco can't pay

X

one

week later

they think to rent out 3 air matresses on floor to people and serve breakfast they make a simple website (a blog with maps) airbedandbreaktast.com

realized

photos of places were not pretty

2 men,1 woman showed up. paying \$80 each

after quests left they thought this could be a big idea

2009

they invited former roommate as a co-founder

to build the site 2008

Brian, I hope it's not the only idea you are working on

oor-to-door in NYC and took photos

were rejected by a famous VC in New York (Fred Wilson).

were making \$200 a week for months. not growing

Barry Municers (a famous singer) drummer rents an

from Sequoia

got \$20,000 in

Y Combinsty

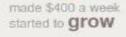
first funding

from Paul Graham's

then \$112 million from many investofs and Ashton Kutcher

(friend)

sold "Obams O's" cessal. before the election. for \$40 each making


first money \$30,000

2010-2011

\$10 BILLION VALUATION

2014

entire house

Airbnb Newsroom

A Message from Co-Founder and CEO Brian Chesky

By Airbnb · May 5, 2020 · Company

While these actions were necessary, it became clear that we would have to go further when we faced two hard truths:

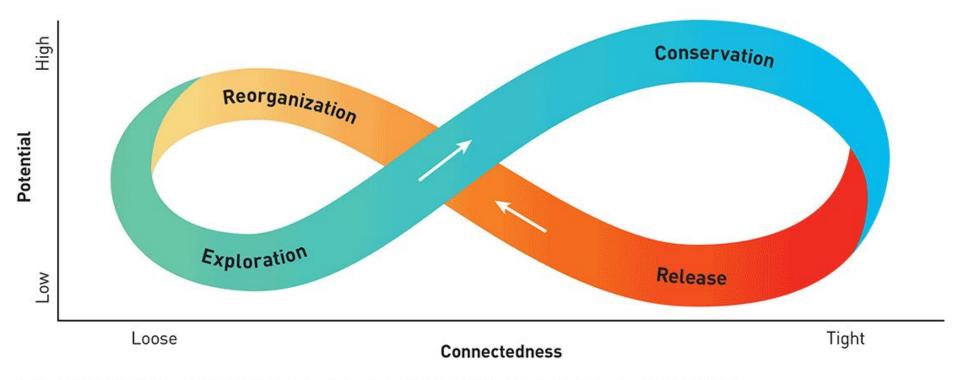
- 1. We don't know exactly when travel will return.
- 2. When travel does return, it will look different.

The Economist 📀 @TheEconomist · 8m

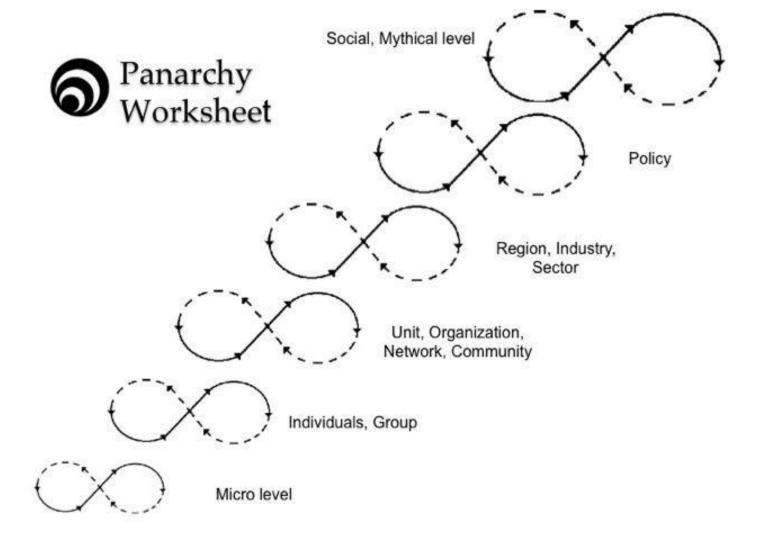
The pandemic may be remembered not just as a health disaster, but as a geopolitical turning-point away from America

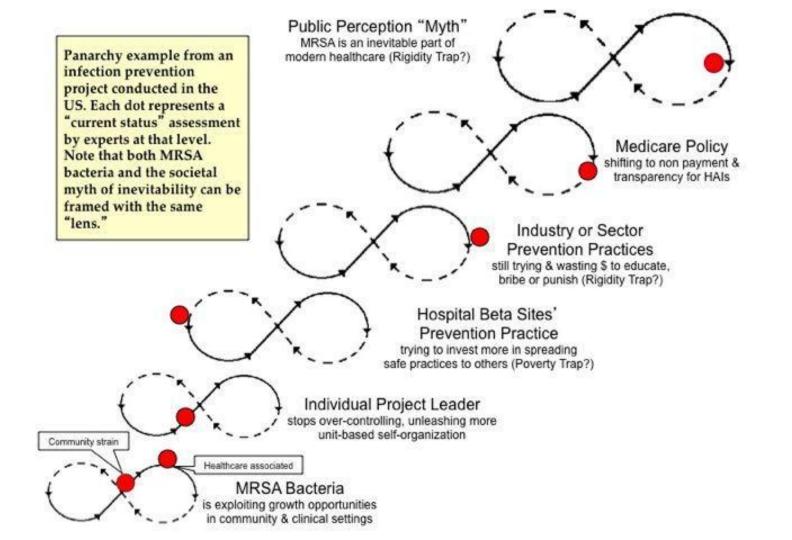
Is China winning?

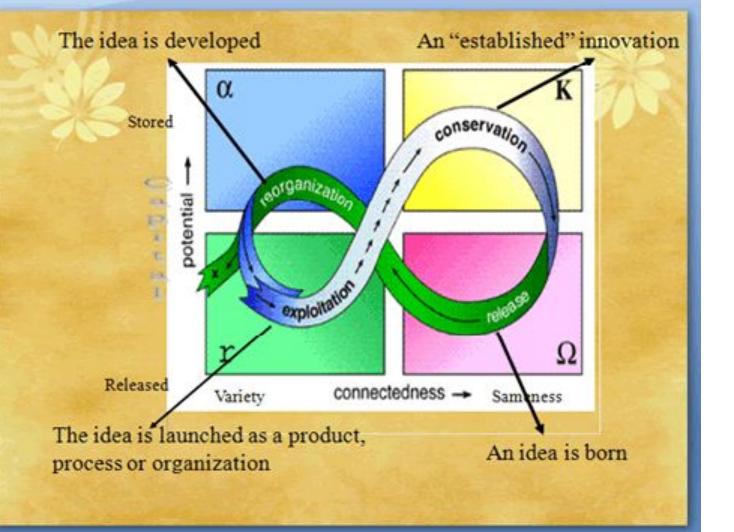
The geopolitical consequences of covid-19 will be subtle, but unfortunate

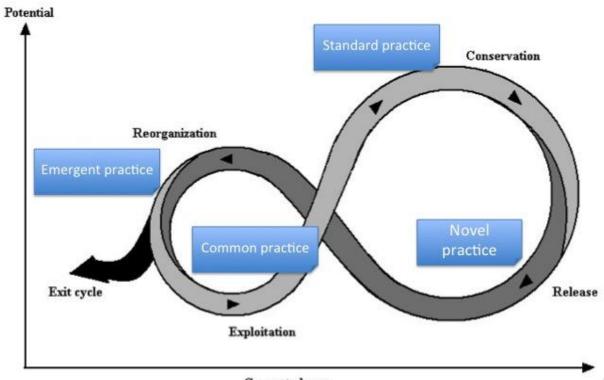


Plan de hoy

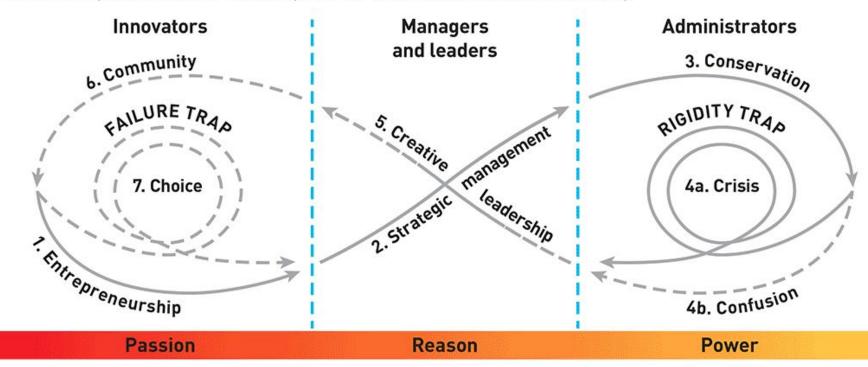

- 1) Breve update y referencias
- 2) El caso de CHINA en IA
- 3) México en el contexto de IA y negocios
- 4) La Ciencia de los Datos y la IA
- 5) Escenarios actuales ante COVID-19
- 6) PANARQUÍA
- 7) ¿ Qué podemos hacer?


The adaptive cycle


An infinity loop is a model for how destructive processes create spaces for new growth in both business and nature.


Source: Adapted from Lance Gunderson and C.S. Holling, Panarchy: Understanding Transformations in Human and Natural Systems (Island Press, 2001)

Adaptive Cycle

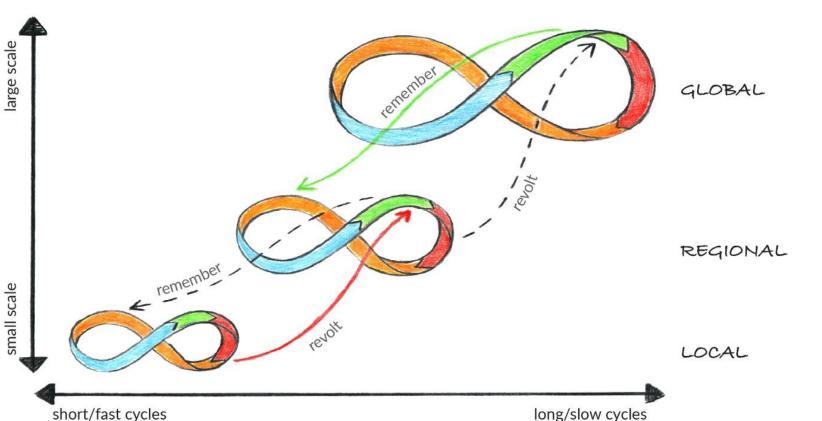


Connectedness

2

Adaptive cycles contain two major traps

Most companies won't make it all the way through an adaptive business cycle. The solid lines represent the slow "front loop," and the dashed lines are the fast "back loop."


Source: David K. Hurst, The New Ecology of Leadership: Business Mastery in a Chaotic World [Columbia Business School Publishing, 2012]

PANARCHY OF INTERCONECTED ADAPTIVE CYCLES AT DIFFERENT SPATIAL AND TEMPORAL SCALES

PANARCHY OF INTERCONECTED ADAPTIVE CYCLES AT DIFFERENT SPATIAL AND TEMPORAL SCALES

着

L

بخ

ちゃ

か)

Plan de hoy

- 1) Breve update y referencias
- 2) El caso de CHINA en IA
- 3) México en el contexto de IA y negocios
- 4) La Ciencia de los Datos y la IA
- 5) Escenarios actuales ante COVID-19
- 6) PANARQUÍA
- 7) ¿ Qué podemos hacer? 土着化!!

What is Glocalization? 土着化 (どちゃくか) - dochakuka

Glocalization originated from Japanese business practices in the 1980s. Its literal translation was Dochakuka (土着化: melding global inside local). Glocalization, the blending and connecting of local and global contexts while maintaining differences and significant contribution of different cultural communities, serves to prevent learner assimilation in the host country (Kettaneh, 2016). It enriches learning and empowers learners since global issues are related and connected to local practice (Apple, Kenway, & Singh, 2005). By definition, the term glocal refers to those individuals, groups, divisions, units, organizations, and communities that are willing and able to "think globally and act locally" (Tien & Talley, 2012, p. 126). For the purpose of our research, Robertson's (1995) definition of glocalization as "the simultaneity— the co-presence— of both universalizing and particularizing tendencies" (p. 30) was utilized. Hence, to implement the concept of "think globally, act locally," educators and administrators should re-think their strategy relating to curriculum design and institutional policy. Educators and policy makers should permit construction of courses, pedagogy, and campus environments that enhance students' retention, employability, and prepare them to become globally compatible citizens (Yang, 2001).

土着化 (どちゃくか) - dochachuka

Secretaría General Iberoamericana

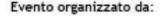
Las Pymes como factor del desarrollo económico y social en Iberoamérica

Las oportunidades de una alianza con el Magreb

La Articulación productiva a partir de las PYMES

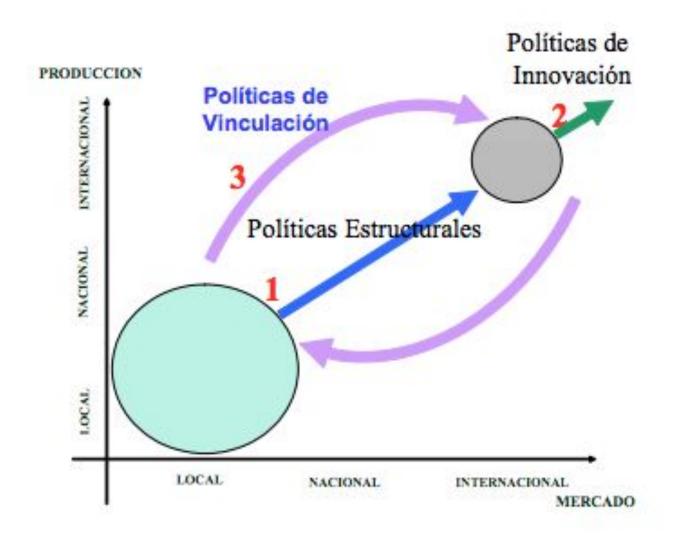
Las Pymes come eje de desarrollo económico local y de innovación

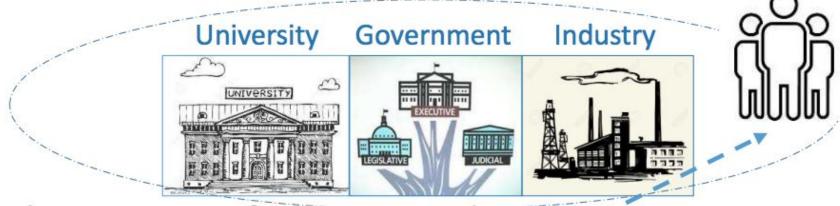
Presentación Inicial Prof. Patrizio Bianchi Madrid, 22 de octubre de 2012


La nuova rivoluzione industriale

> ore 17.30 23 novembre 2018

Presentazione del libro di Patrizio Bianchi 4.0 La nuova rivoluzione industriale che ripercorre l'evoluzione dell'industria, le sfide globali targate 4.0 e le nuove frontiere del mondo del lavoro. Patrizio Bianchi è professore ordinario di Economia applicata all'Università di Ferrara.


Trentino Sviluppo (Hall) Via Zeni Fortunato, 8, 38068 Rovereto TN



In the 1990s by Etzkowitz (1993) and Etzkowitz and Leydesdorff (1995)

Illustrated the shift from a dominating industrygovernment dyad in the Industrial Society to a growing triadic relationship between universityindustry-government in the Knowledge Society.

Triple Helix: The potential for innovation and economic development in a Knowledge Society lies in a more prominent role for the university and in the hybridisation of elements from university, industry and government to generate new institutional and social formats for the production, transfer and application of knowledge.

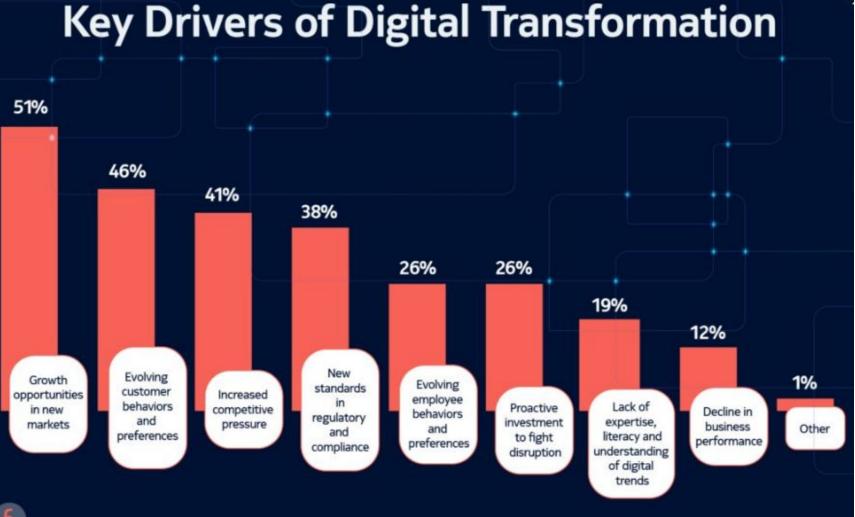
The University: Learning, Research, Innovation re-Stage The Government: Policies, Taxes, etc. The Industry: production / Services segment.

The essence of concept to development of Max Human Resources & High Rotation of Business Potential

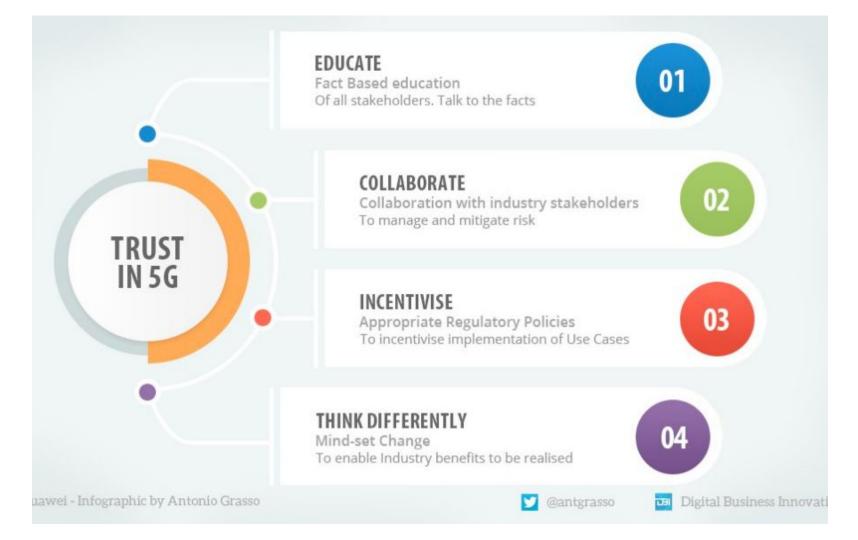
Triple Helix Systems of innovation

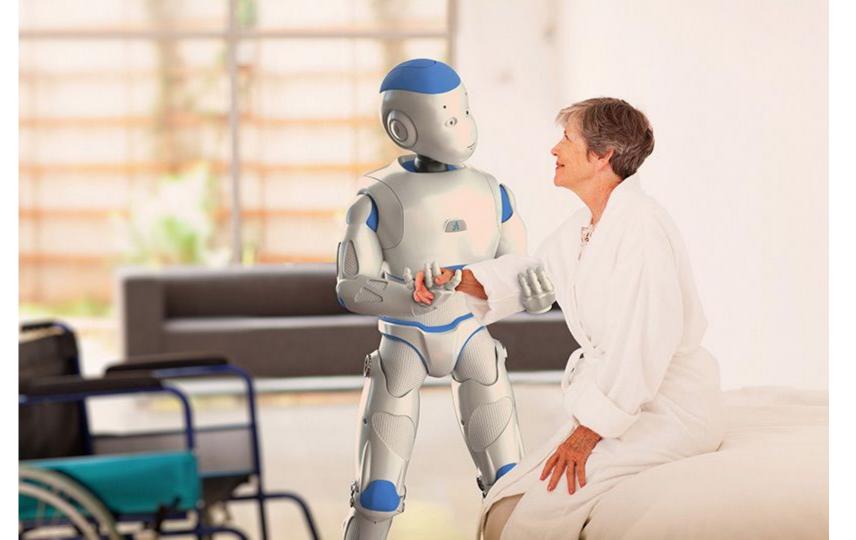
key features of Triple Helix

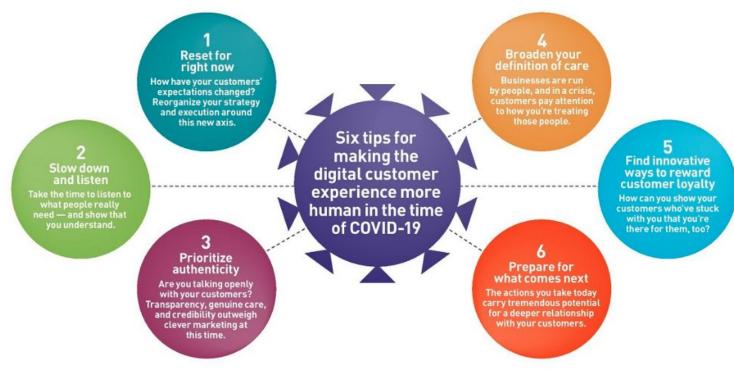
A set of components, relationships and functions. Among the components of Triple Helix Systems, a distinction is made between:


- A. R&D and non-R&D innovators.
- B. "Single-sphere" and "Multi-sphere" (hybrid) institutions.
- C. Individual and Institutional innovators.

The interactions into an 'innovation system' format, Defined The relationships between components are synthesized into;


Five main types:


- 1.Technology transfer
- 2. Collaboration and conflict moderation
- 3. Collaborative leadership
- 4. Substitution
- 5.Networking



For further insights: strategy-business.com/customerexperience ©2020 PwC. All rights reserved.

strategy&